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INTRODUCTION

Coral reef fishes form diverse and complex commu-
nities in tropical and subtropical environments that
support intensive extractive and non-extractive com-
mercial activities, such as fishing and tourist-based scuba
diving. No-take marine reserves are a management tool,
applicable for resource enhancement or conservation,
that serves to promote the maintenance of a system’s
ecological structure, integrity and stability (Bohnsack
1996). These goals are best achieved if habitats support-
ing all species, and all life-stages, are encompassed
within the reserve system, either in large closed areas or
within a series of smaller reserves networked through the
movement of individuals. This requires knowledge of
the habitat requirements of species through ontogeny
and their dispersal capabilities and pathways.

Coral reef fishes are variable in their use of habitats
and the extent of their movement. Tag-recapture studies
indicate that many reef species, at least as adults, are
strongly site-attached. Recaptures at the tagging loca-
tion are characteristic of most studies (Bardach 1958,
Moe 1966, 1967, Randall 1961, 1963, Springer and
McErlean 1962, Parker 1990, Recksiek et al. 1991,
Corless et al. 1997, Friedlander et al. 2002). Short-term
acoustic tagging studies have shown similar results (Hol-

land et al. 1993, 1996, Tulevech and Recksiek 1994,
Zeller 1997, Meyer et al. 2000, Stewart and Jones 2001)

Nevertheless, although generally site-attached, reef
species will undertake movements or migrations at vari-
ous spatiotemporal scales. Several processes are involved,
including temporary migrations for feeding (Stark and
Davis 1966, Randall 1963, Hobsen 1972, 1973, Ogden
and Zieman 1977, Baker 1992, Ogden and Quinn 1984,
Fishelson et al. 1987, Holland et al. 1993, 1996, Tulevich
and Recksiek 1994, Meyer et al. 2000, Nagelkerken et al.
2000b) or spawning (Burnett-Herkes 1975, Johannes
1978, Robertson 1983, Colin et al. 1987, Shapiro 1987,
Myrberg et al. 1989, PDT 1990, Zeller 1998). Two impor-
tant factors in determining how far fishes move are size
and the tendency to form groups: larger fishes and those
in groups tend to range over greater areas (Roberts and
Polunin 1993).

Ontogenetic onshore-to-offshore habitat transitions
among tropical reef fishes are less studied than migra-
tions to and from a “residence” site, but are common in
many important groups, including the most desirable
commercial species, e.g., snappers and groupers (Parish
1987 and references therein; see also references in Wil-
liams 1991). Typically, evidence for such habitat transi-
tions is based on differences in the size distributions of
individuals across a shelf, with larger individuals found
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progressively offshore (e.g., Smale 1988, Rooker 1995,
Dennis 1992a). Similar inferences can be made when
species have specific known, near-shore settlement or
nursery areas (e.g., McFarland 1979, Quinn and Kojis
1985, Rutherford et al. 1989a,b, Dennis et al. 1991,
Dennis 1992b, Rooker 1995, Sheaves 1995, Lindeman
and Snyder 1999). Detailed studies show these migra-
tions often consist of distinct spatial separation in settle-
ment areas, nursery areas, juvenile and adult feeding
areas, and adult spawning areas (Eggleston 1995,
Appeldoorn et al. 1997, Light and Jones 1997, Lindeman
1997, Lindeman et al. 1998, 2000, Eggleston et al. 1998,
Nagelkerken et al. 2000a,c). These studies have demon-
strated patterns of habitat use in some species, while
growth studies coupled with site-specific size-frequency
distributions can give an indication of the timing of
habitat transitions and the potential distances of travel.
The distribution of necessary habitat and the temporal
scale of investigation confound studies of reef fish move-
ment, however (Appeldoorn et al. 1997, Appeldoorn
1998). A complete lack of understanding of how fish
move (direction of displacement) in relation to habitat
distributions, current flow, population density gradi-
ents, etc. prevents the development of robust principles
concerning habitat linkages.

In this study, we compare the fish communities
between nearshore and offshore lagoonal patch reefs. Our
purpose is to examine the potential effect of habitat
connectivity, i.e., the degree of flow of individuals across
the seascape between different habitat patches, on the
species composition and trophic structure of these com-
munities. In particular, we concentrate on grunts
(Haemulidae) and snappers (Lutjanidae). Both ontoge-
netic habitat shifts and feeding migrations occur in these
families, making them likely candidates to demonstrate
the effects of habitat connectivity. They also are impor-
tant components of commercial and subsistence fisheries
of the Greater Caribbean Basin. We determine whether
differences in the proximity to surrounding and/or
nearshore habitats (e.g., mangroves, shallow seagrass
beds, shallow rocky shores) influences the fish commu-
nities found on these reefs by examining connectivity at
two spatiotemporal scales. Daily connectivity between
shelter and feeding habitats was examined by comparing
the abundance of fishes feeding on soft-bottom benthic
invertebrates to the extent of available, nearby feeding
habitat. On a larger scale, we used length-frequencies
distributions from various habitats across the insular
platform to examine potential ontogenetic pathways and
dispersal capabilities from nearshore nursery areas to
offshore reefs.

METHODS

Study Site
The insular platform containing the small islands of

Old Providence and Santa Catalina (OP/SC) is approxi-
mately 10 x 30 km and is located in the western Caribbean
(Figure 1). The islands occur on the southern half of the
platform and occupy an area of 18 km2. Due to the
physical isolation and small population (4,140) of the
islands, the platform is among the least environmentally
degraded locations in the wider Caribbean region.
Artisanal fishing is an important industry, but the pri-
mary targets are conch, spiny lobster, coastal pelagic
fishes and deep-slope demersal fishes, with scuba used
for the invertebrates and hook and line used for the fishes.
As a consequence, the shallow reef fish communities are
largely intact relative to other Caribbean locations.
(Friedlander et al. in press).

A complete description of the habitats on the plat-
form is given by Sanchez et al. (1998) and Friedlander et
al. (in press). The windward edge of the platform has a 32-
km long continuous barrier reef with a sinuous fore-reef
terrace. The northern and southern ends of the barrier reef
crest consist of spurs of Millepora complanata, with
colonies of Porites spp. and Agaricia spp., with the
zoanthid Palythoa and encrusting red algae being abun-
dant. The middle portion consists of pinnacles up to 5 m
tall, again with Millepora on the top and coral colonies
and encrusting algae along the walls. The windward
forereef consists of a low relief terrace sloping gently
from 7–12 m down to 30–35 m and ending at an extensive
sand platform.

The lagoon basin contains numerous patch reefs
characterized by high coral cover and overall benthic
species diversity. To the north are found ribbon-like and
anastomosous (Diaz et al. 1997) systems of coral heads
(Montastraea spp.). In the middle region, patch reefs are
smaller, more isolated, less abundant and contain a di-
verse coral community and dense populations of soft
corals and gorgonians. Coral and algal cover are highly
variable among patch reefs. The lagoon basin is inter-
rupted by two diagonal sand bars containing large num-
bers of shallow patch reefs. These patch reefs are
differentially characterized by large coral heads, dead
Acropora palmata, and plexaurid gorgonians. The lee-
ward margin (leeward slope habitat) is characterized by
a rich mixed coral/octocoral community that terminates
in a drop-off (45°–70°) with black corals, aposymbiotic
octocorals (ellisellids) and plate corals, typical of deep-
water reef slopes (i.e., Sanchez 1999).
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Figure 1. Sampling sites on the Old Providence/Santa Catalina platform. Islands are in gray. Outer solid line is the 100 m
depth contour. Inner solid line represents the barrier reef. WF = windward forereef, LP = lagoonal patch reefs, LS = leeward
slope, WC = windward crest, WM = windward mangroves, LG = lagoonal gorgonian, and GR = grass beds. In the inset:
SA = South America, CA = Central America.
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Seagrass beds, mangroves, and rocky shores border
much of the islands’ coast. There are two principal areas
of shallow seagrass and mangroves: a small area found
between the two islands and a large extent within the
McBean Lagoon National Park on the northwest coast of
Old Providence.

Sampling Strategy
A stratified sampling strategy was employed to in-

corporate various aspects of the geomorphological, en-
vironmental, and oceanographic conditions of the
platform. The location of the islands on the insular
platform, combined with a strong westward current flow-
ing over the eastern barrier reef, effectively divides the
platform into a southern portion in close proximity to the
islands, and a northern bank with little influence from the
distant islands. Depth and degree of wave exposure have
been shown to be major factors affecting soft coral com-
munity composition and distribution around Old Provi-
dence (Sanchez et al. 1998). Therefore, sampling was
stratified into bank and nearshore strata and additionally
stratified into windward, leeward, and lagoonal loca-
tions. Sampling sites were located within two bank and
two nearshore sampling swaths across the platform.

The fish fauna was characterized using visual census
along measured strip-transects of 25 x 4 m for a total of
100 m2 per transect. Strip-transects were chosen over
point count methodologies because there is no clear
indication that one method is superior to another (Bortone
et al. 1989, Samoilys 1992) and because some habitats
(e.g., mangroves) are not amenable to point-counts. Two
of the divers identified all fishes within each transect. A
third diver sampled a similar transect but only enumer-
ated snappers, groupers and grunts to increase the sample
size within these groups. Because of currents, diver
safety and the need to maintain similar depths among
replicates, divers ran their transects parallel, with ap-
proximately 4–5 m separating transects. After complet-
ing each transect, divers continued swimming in the
same direction for approximately 5 m before starting the
next transect. The total number of transects at each site
was variable depending upon depth, current, and total
fish abundance. However, all analyses except for length-
frequency distributions were based on mean abundance
over all transects per site. Each fish observed within a
transect was identified to species, enumerated, and its
total length (TL) classified into a 5-cm length class. Live
wet weight, W, of all fishes recorded in all censuses was
estimated from the visually estimated TL using the rela-
tion W = a(TL)b. Values of the fitting parameters a and b
for each species were derived from Bohnsack et al. (1986)

and the FishBase web site (http://fishbase.org/). In the
cases where length-weight information did not exist for
a given species, the parameters from similar bodied
congeners were used. Each species was classified into
one of six trophic guilds following data in Dennis (1992a),
Nagelkerken et al. (2000b), and Sierra et al. (2001):
herbivore, mobile invertebrates, mobile invertebrates/
piscivore, piscivore, sessile invertebrates, and plankton.

We calculated species diversity using the Shannon-
Weaver Diversity Index (Ludwig and Reynolds 1988):
H′ = Σ (p

i 
ln p

i
), where p

i
 is the proportion of all individu-

als counted that were of species i. The evenness compo-
nent of diversity was expressed as: J = H′/ln (S), where S
is the total number of species present (Pielou, 1977).

We first examined whether the number and type of
surrounding habitats, or proximity to nearshore habitats
affects fish community structure by comparing the fish
fauna at the bank and nearshore lagoonal patch. These
habitats were spatially isolated, had a high diversity and
abundance of fishes and had the highest number of
replicate sites. Fish assemblage characteristics among
bank and nearshore sites were compared using One-Way
Analysis of Variance (α = 0.05). Individuals and biomass
were log-transformed for statistical analysis and back
transformed for data presentation purposes. Data on pro-
portion of biomass within feeding guilds were arcsine
transformed prior to analysis.

A georeferenced habitat map for the OP/SC platform
(INVEMAR, unpublished) was used to examine the num-
ber, and amount (area) of habitat types within 500 m and
1,000 m of the lagoonal patch reef sampling sites. Also
obtained were the minimum distances from each sampling
site to each of the different habitat types. To be consistent
with the stratified sampling protocol, habitat types on the
map were combined to form the following habitat types:
Windward Forereef, Windward Crest, Lagoon Patch Reef,
Lagoon Gorgonians, Lagoon Basin, Seagrass, Mangrove,
Land, and Leeward Slope. Results from both fish assem-
blages and benthic communities suggest that this catego-
rization of habitat types was ecologically relevant
(Friedlander et al. in press). Seagrass habitats were further
divided into those shallower or deeper than 3 m to differ-
entiate potential nursery areas (Lindeman 1997, Lindeman
et al. 1998, Nagelkerken et al. 2000a). Additionally, hard
bottom less than 3 m depth (= shoals) was also designated
for the same reason. All calculations were made using a
Geographic Information System.

The biomass of grunts and snappers at the lagoonal
patch reefs were each compared to the estimated avail-
able feeding grounds in the surrounding area. Seagrass
beds and sand/rubble plains represent important feeding
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habitats for grunts and moderate sized snappers. Areas for
these habitats were combined and their association to
grunt and snapper biomass was examined using linear
regression. The lagoon basin habitat, which consists
mostly of coarse, loose and bioturbated sand, was not
included because it is relatively poor in associated benthic
invertebrate fauna.

The length frequency distributions of grunts and
snappers were compared among all sites sampled across
the OP/SC platform (Figure 1) to determine if there were
shifts in the range and modal values indicative of onto-
genetic migration from settlement and or nursery areas to
adult habitats, and to determine if there were limits in the
direction or distance of such migrations. For this analy-
sis, data from all transects were used, so total sample sizes
are affected by the number of transects conducted at each
site. However, the examination of shifts in the distribu-
tions are based on the relative (%) length frequency
within each site, not the absolute number, and each
distribution will be more accurately represented the
larger the number of individuals included in the sample.
For this reason, only well represented species from these
families are included in the analysis.

RESULTS

Analysis of Patch Reef Communities
The habitat characteristics of each sampling site

were described by Friedlander et al. (in press) and are
summarized in Table 1. Significant  differences (P < 0.05)
between nearshore and bank patch reefs were found, with
nearshore sites having lower rugosity and higher percent
sediment cover. Nearshore sites were characterized by
having a greater number of different habitat types sur-
rounding them within both 500 m and 1,000 m, but the
differences were significant (P = 0.05) only for the latter,
with nearshore sites having more than twice the number

of different nearby habitat types (Table 2). No significant
differences were observed in habitat diversity or even-
ness within either distance. Differences in distance to
nearest habitat type between nearshore and bank patch
reefs were significant (Table 3). Nearshore sites were
significantly closer to deep and shallow seagrass, man-
groves, land margins and lagoon gorgonians. These
results highlight that nearshore patch reefs were charac-
terized by lower structural complexity, higher sediment
cover, proximity to a greater number of habitats, and were
significantly closer to mangrove, seagrass and other
nearshore nursery habitats.

Community characteristics of the fishes at bank and
nearshore sites are given in Table 4. Despite having
greater mean species richness and much greater biomass
on average, nearshore sites were significantly different
(P < 0.05) from bank sites only in having a greater num-
ber of individuals. In most cases, considering the low
number of sites within each category, the power of the
tests were quite low. There were suggestions that the
trophic structure of the nearshore and bank sites differed,
with nearshore sites on average having a greater propor-
tion of biomass in the mobile invertebrate and mobile
invertebrate/piscivore trophic groups and a smaller pro-
portion within the herbivores (Table 5). However, none
of these differences were statistically significant, again
with very low power. Snappers (Lutjanidae) and grunts
(Haemulidae) belong to the former trophic groups and
were important components of the patch reef communi-
ties. At nearshore sites there was a greater (4x) mean
weight of these two families and they comprised a greater
percentage of the total community biomass (Table 4).

Significant relationships were found between the
biomass of grunts and snappers and the amount of soft-
bottom feeding habitat within 500 m of each site (Figure
2). For areas within 1000 m (Figure 3), only the relation-
ship with grunt biomass was statistically significant.

TABLE 1

Habitat characteristics of patch reefs sampled. * = mean of two surveys. † = statistically significant difference (ααααα
 = 0.05) between bank and nearshore sites. Gorg. = gorgonians. (From Friedlander et al., in press).

Map Depth Coral Coral Gorg Gorg Algal Sediment Sponge
Location code (m) Association Rugosity† cover species density species cover cover† cover

North bank patch reefs 1LP 9.9 Bank 1.98 37.74 21 9.29 4 17.46 7.93 2.29

North bank leeward patches 2LP 6.7 Bank 2.10 31.50 12 17.15 9 41.55 3.90 0.40

South bank lagoon patches 3LP 8.4 Bank 2.09 24.07 18 1.39 7 52.24 2.73 0.63

Morgan’s Head* 4LP 5.9 Nearshore 1.66 17.85 15 7.53 8 48.95 22.50 1.30

San Felipe’s Shoal* 5LP 6.7 Nearshore 1.66 29.69 23 9.70 11 31.69 13.04 3.59

Manta City 6LP 6.9 Nearshore 1.60 38.07 11 0.30 1 17.86 19.60 1.02
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Analysis of Length-Frequency Distributions
French grunt, Haemulon flavolineatum. French

grunt was the most commonly occurring species, being
found at all but two sites near the central portion of the
barrier reef (4WF, 3WC). Highest abundances were found
at Morgan’s Head (4LP) and San Felipe Shoal (5LP), and
at two forereef aggregations (1WF, 6WF). However, rea-

sonable numbers were observed at most other sites (Table
6). Sites in which individuals were observed in the
smallest length class (0–5 cm) were near the island; the
mangrove prop root habitat at McBean Lagoon (3WM)
serves as a nursery area, but not to the extent observed in
some other species. Nearshore sites also tended to show
a broad range of sizes; note that while no small juveniles

TABLE 2

Area (Ha) of habitats within a 500-m and 1000-m radius of sampled patch reefs.

Habitat Type

Patch Lagoon Lagoon Lagoon Sand and Seagrass Seagrass Shoal Land Windward Leeward
 Reef Basin Patch Reef Gorgonians Rubble < 3 m > 3 m Crest Slope

Area of Habitats within 500 m
1LP 36.5 41.6
2LP 10.4 31.5 14.4 21.8
3LP 63.8 14.3
4LP 13.4 2.2 1.5 39.6 3.8 18.1
5LP 41.5 0.3 32.8 3.4
6LP 51.8 2.4 23.9

Area of Habitats within 1,000 m
1LP 154.7 154.4 3.4
2LP 82.7 76.4 40.3 113.0
3LP 285.8 25.3 1.4
4LP 84.9 8.9 4.4 5.0 80.5 51.3 0.3 78.0
5LP 138.1 20.0 87.1 15.3 25.5 25.6
6LP 125.9 6.9  136.2 33.0 2.1  0.2 8.1  

TABLE 3

Mean distance (meters) from bank and nearshore patch reefs to the nearest patch of each habitat type. SD =
standard deviation, ns = not signficant, s = significant.

Bank (N = 3) Nearshore (N = 3) Significance

Habitat Type Mean SD Mean SD (ααααα = 0.05)

Lagoon Basin 22 38 109 189 ns
Sand and Rubble 758 591 569 882 ns
Lagoon Patch Reef 8 14 284 162 ns
Lagoon Gorgonians 11,360 2,949 1,162 1,511 s
Land 9,780 3,216 919 724 s
Mangrove 10,617 3,263 1,904 821 s
Seagrass <3m depth 9,656 3,148 429 380 s
Seagrass >3 depth 9,492 3,092 475 247 s
Shoals 6,164 3,226 3,780 1,848 ns
Windward Crest 1,674 409 3,511 2,641 ns
Windward Forereef 2,976 1,177 4,581 2,932 ns
Leeward Slope 1,372 1,542 2,250 2,269 ns
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were observed within the transects at Morgan’s Head,
several schools of newly settled French grunts were
observed at the site. There was a progressive increase in
length away from the islands toward the outer bank.

White grunt, Haemulon plumieri. All patch reefs
had white grunts, but the abundance at Morgan’s Head
(4LP) was 3 to 5 times greater than observed at other sites.
Overall, white grunts were found at all but one forereef
site (4WF), two leeward slope sites (1LS, 3LS) and the
mangrove habitat at McBean Lagoon (3WM). Length-
frequency distributions suggest an ontogenetic shift
from nearshore sites to more distant sites (Table 7).
Dominance by large juveniles and small adults in the 10–
15 and 15–20 length classes was only found at Morgan’s
Head (4LP) and Manta City (6LP), both nearshore patch
reefs. At all other sites larger adults (length classes from
20 to 35 cm) were found.

Blue striped grunt, Haemulon sciurus. Although
small individuals were seen at several sites, the data
suggested that two areas in particular were important

nursery areas, harboring small juveniles in the size range
of 5 to 20 cm: Morgan’s Head (4LP) and the mangrove
prop root habitat at McBean Lagoon (3WM). Abun-
dances at these sites were also one to two orders of
magnitude greater than other sites, with the exception of
a large aggregation of adults observed at the northern-
most forereef site (1WF). A distinct shift in size frequency
distributions was observed at other sites, including other
patch reefs, forereef sites and nearshore leeside slope
sites. Data in Table 8 suggest an ontogenetic movement
of blue striped grunts from the nursery areas to areas west
and south around the island and north on to the bank.
Abundances at patch reef sites out on the bank were an
order of magnitude less that at nearshore patch reefs. No
individuals were observed at bank leeside slope sites.

Yellowtail snapper, Ocyurus chrysurus. Length-
frequency distributions for yellowtail snapper are given
in Table 9. The greatest abundance of yellowtails oc-
curred at San Felipe’s Shoal (5LP). Lengths spanned the
0 to 30-cm length classes, but 75% fell within the 20–25
cm length class. A similarly broad length range, but with

TABLE 4

Comparison (mean and standard deviation) of fish assemblage characteristics from 25 x 4-m belt transects at
nearshore and bank patch reef sites. Biomass is in grams. P-value records the level of statistical significance;
Power gives the power of the test assuming ααααα = 0.05.

Bank (N = 3) Nearshore (N = 3)

Mean Std. Dev. Mean Std. Dev. P-value Power

Species Diversity 2.43 2.513
Species Evenness 0.793 0.777
Species Richness 21.71 0.193 25.873 4.868 0.213 0.133
Number of Individuals 112 19 190 29 0.017 0.809
Total Biomass 3700 1246 6453 3166 0.234 0.117
Grunt Biomass 437 156 1524 711 0.038 0.584
Snapper Biomass 313 44 1340 602 0.001 1.000

TABLE 5

Percentage of total biomass by trophic guild for fish assemblages at nearshore and bank patch reefs. Herb. =
herbivores, Mobile Inverts. = mobile invertebrate feeders, MI/P = mobile invertebrate and piscivore feeders, Pisc.
= piscivores, Sessile Inverts. = sessile invertebrate feeders, and Plank. = planktivores

Trophic Group   

Herb. Mobile Inverts. MI/P Pisc. Sessile Inverts. Plank.

Bank 54.5 27.4 6.4 1.7 6.9 3.1
Nearshore 23.8 42.8 19.5 2.6 3.1 8.3
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Figure 2. Relationship between the mean biomass of grunts (G; filled circles, solid line) and snappers (S; open circles, dashed
line) observed in 24 x 4-m belt transects at each patch reef and the area of seagrass and sand/rubble habitat within 500 m
of the sampling sites.

G = 0.0037 A + 448.35   r2 = 0.7451

S = 0.0032 A + 361.33   r2 = 0.698
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Figure 3. Relationship between the mean biomass of grunts (G; filled circles, solid line) and snappers (S; open circles, dashed
line) observed in 24 x 4-m belt transects at each patch reef and the area of seagrass and sand/rubble habitat within 1,000
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TABLE 7

Percent length-frequency distributions for white grunt, Haemulon plumieri. N = sample size. See Figure 1 for site
locations.

Length Class (cm TL)

Sampling Site Site Code 0–5 5–10 10–15 15–20 20–25 25–30 30–35 35–40 N

North bank windward forereef 1WF 83 17 6
North bank patch reefs 1LP 7 67 20 7 15
North bank leeward patches 2LP 75 25 4
South bank forereef 3WF 100 1
South bank leeward slope 2LS 71 29 7
South bank lagoon patches 3LP 7 71 14 7 14
South bank Acropora forereef 2WF 17 67 17 6
Active pinnacles 3WC 100 2
Inactive pinnacles 2WC 50 50 2
Morgan’s Head 4LP 25 54 19 2 81
San Felipe’s Shoal 5LP 30 52 19 27
Cathedral 6LS, 7LS 9 64 27 11
Felipe’s Place 4LS 50 50 2
Manta City 6LP 60 20 20 10
Manchineel Bay forereef 5WF 4 96 26
South forereef 6WF 100 1

TABLE 6

Percent length-frequency distributions for French grunt, Haemulon flavolineatum. N = sample size. See Figure
1 for site locations.

Length Class (cm TL)

Sampling Site Site Code 0-5 5-10 10-15 15-20 20-25 25-30 N

North bank windward forereef 1WF 51 44 5 61
North bank leeward slope 1LS 67 11 22 9
North bank patch reefs 1LP 5 42 32 21 19
North bank leeward patches 2LP 41 35 24 17
South bank  forereef 3WF 100 6
South bank leeward slope 2LS 33 67 3
South bank lagoon patches 3LP 4 54 38 4 26
South bank Acropora forereef 2WF 33 33 33 6
South bank crest 1WC 4 48 40 8 25
Inactive pinnacles 2WC 11 37 32 11 5 5 19
Blue Hole 3LS 33 67 6
Morgan’s Head 4LP 25 48 27 60
McBean Lagoon 3WM 100 22
San Felipe Shoal 5LP 30 19 23 15 11 2 111
Cathedral 6LS, 7LS 45 18 18 18 11
Felipe’s Place 4LS 50 50 2
Manta City 6LP 86 14 7
Manchineel Bay forereef 5WF 75 25 4
South forereef 6WF 33 67 144
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TABLE 8

Percent length-frequency distributions for blue striped grunt, Haemulon sciurus. N = sample size. See Figure 1 for
site locations.

Length Class (cm TL)

Sampling Site Site Code 0–5 5–10 10–15 15–20 20–25 25–30 30–35 N

North bank windward forereef 1WF 20 27 53 96
North bank patch reefs 1LP 50 50 2
North bank leeward patches 2LP 100 2
South bank forereef 3WF 100 1
South bank lagoon patches 3LP 44 44 11 9
South bank Acropora forereef 2WF 100 1
South bank crest 1WC 17 83 6
Active pinnacles 3WC 100 1
Inactive pinnacles 2WC 25 75 4
Morgans’s Head 4LP 53 24 18 5 0 357
San Felipe’s Shoal 5LP 14 57 27 3 37
Cathedral 6LS, 7LS 33 67 3
Felipe’s Place shelf 5LS 100 12
McBean Lagoon 3WM 29 47 25 824
Manta City 6LP 7 7 62 21 3 29
Manchineel Bay forereef 5WF 100 1

TABLE 9

Percent length-frequency distributions for yellowtail snapper, Ocyurus chrysurus. N = sample size. See Figure 1
for site locations.

Length Class (cm TL)

Sampling Site Site Code 0–5 5–10 10–15 15–20 20–25 25–30 30–35 35–40 N

North bank windward forereef 1WF 45 45 9 11
North bank patch reefs 1LP 40 60 10
North bank leeward patches 2LP 44 56 9
South bank lagoon patches 3LP 60 20 20 5
South bank crest 1WC 50 50 2
Morgan’s Head 4LP 56 44 9
San Felipe Shoal 5LP 1 2 2 11 72 11 83
Cathedral 6LS, 7LS 44 38 6 13 16
Felipe’s Place shelf 5LS 50 50 2
Felipe’s Place 4LS 17 33 17 33 12
Blue Hole 3LS 47 53 15
Manta City 6LP 50 10 20 20 10
Manchineel Bay forereef 5WF 100 1

much lower abundance, was observed at Manta City
(6LP). In general, there is an increase in length distribu-
tions running from the northern nearshore site of Morgan’s
Head (4LP) progressively north on to the bank, terminat-
ing at the northernmost forereef site (1WF). In similar
fashion but with greater abundances, length distribu-

tions generally increase from Morgan’s Head (4LP) and
San Felipe’s Shoal (5LP) to the leeward slope sites near
the island; no yellowtail snappers were observed at
leeward slope sites on the bank.
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TABLE 10

Percent length-frequency distributions for schoolmaster snapper, Lutjanus apodus. N = sample size. See Figure
1 for site locations.

Length Class (cm TL)

Sampling Site Site Code 0–5 5–10 10–15 15–20 20–25 25–30 30–35 35–40 N

North bank windward forereef 1WF 100 2
North bank leeward patches 2LP 100 1
South bank lagoon patches 3LP 42 17 17 25 12
South bank crest 1WC 17 50 17 17 6
Active pinnacles 3WC 100 2
Inactive pinnacles 2WC 57 14 14 14 7
Blue Hole 3LS 25 50 25 4
Morgan’s Head 4LP 29 30 25 3 11 1 79
McBean Lagoon 3WM 1 25 35 38 1 216
San Felipe’s Shoal 5LP 35 6 6 18 18 12 6 17
Cathedral 6LS, 7LS 100 1
Felipe’s Place 4LS 48 52 23
Felipe’s Place shelf 5LS 100 1
Manta City 6LP 67 33 3
McBean Lagoon 3WM 1 25 35 38 1 216

Schoolmaster snapper, Lutjanus apodus. School-
masters were observed at all sites near the island. The
majority was found within the mangrove prop root habi-
tat at McBean Lagoon (3WM), predominately spanning
the length classes from 5–20 cm (Table 10). Large num-
bers were also found at Morgan’s Head (4LP) ranging
from 10–40 cm in length, but dominant abundance fell
within the 10–25 cm length classes. The data suggest an
ontogenetic shift in length distributions, where at the
leeward slope habitat (Felipe’s Place, 4LS) only large
individuals were observed. On the bank, schoolmasters
were observed at two of the three patch reef sites, but
abundance decreased with increasing distance from the
island. However, two individuals were found at the north-
ernmost forereef site (1WF). Small juveniles (5–10 cm
length class) were also observed at two of the patch reef
sites (San Felipe’s Shoal (5LP) nearshore, and at the south
bank lagoon patches (3LP)), but abundances were an
order of magnitude lower than observed at McBean
Lagoon (3WM).

Gray snapper, Lutjanus griseus. Gray snapper were
observed at only two sites, both immediately adjacent to
land and particularly shallow seagrass and mangrove
habitats. Over 400 individuals were counted in the man-
grove prop root habitat at McBean Lagoon (3WM), with
most falling within the 10–15 and 15–20 cm length

classes. At Morgan’s Head (4LP), 25 individuals were
recorded spanning all length classes from 5 to 40 cm. The
majority was greater than 25 cm in length.

Mutton snapper, Lutjanus anilis. An abundance of
small juveniles, mostly in the 10–15 cm length class, was
found in the mangrove prop roots of McBean Lagoon
(3WM). No individuals larger than 20cm were recorded
there, indicating this habitat served as a nursery area.
Scattered individuals, much larger in size (25–50 cm TL)
were found at all nearhshore patch reefs and at Blue Hole
(3LS), a near island leeward deep slope site. Only one
individual was found on the bank, at the South Bank
Crest site (1WC) about half way up the bank.

Mahogany snapper, Lutjanus mahogoni. On the
bank, mahogany snappers were only found at the patch
reef habitats and only in low numbers. Near the island
they were found at all patch reefs plus the deep leeward
slope habitats. Abundances at the nearshore patch reefs
were 2–10 times greater than observed on the bank. The
smallest juveniles (5–10 cm length class) were only
observed near the island at San Felipe Shoal (5LP).

Dog snapper, Lutjanus jocu. Within the mangrove
prop roots at McBean Lagoon (3WM), 123 individuals
were recorded spanning lengths from 5–25 cm, with 68%
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in the 5–10 cm length class and another 25% in the 10–
15 cm size class. Only three other dog snappers were
recorded, all from nearshore patch reefs: two from San
Felipe Shoal (5LP) and one from Morgan’s Head (4LP).
These were larger than observed in McBean Lagoon,
ranging from 20 to 40 cm in length.

DISCUSSION

We examined the differences in habitats surround-
ing both nearshore and bank patch reefs to determine if
any habitat differences affected the fish communities
observed on the reefs. We found no differences in the
shortest distance between these patch reefs and lagoon
basin, patch reef and sand/rubble habitats. The sites
themselves were patch reefs and by definition their con-
textual setting was lagoon basin and sand/rubble, and
these habitats were all in close proximity. No differences
were also noted in the shortest distance to windward
crest, windward forereef and leeward slope habitats (means
typically 1–3 km). Again, this comes from the definition
of these sites as patch reefs, which must occupy a middle
position on the platform relative to the windward and
leeward margins. Large differences between nearshore
and bank patch reefs were found in the minimum distance
to those habitats associated within shallow areas near the
island (mangrove, shallow seagrass beds, land = rocky
shoreline). Mean distances from nearshore patch reefs to
these habitats were less than 1 km while comparable
distances from bank sites were 9–10 km. The spatial scale
of the differences observed between bank and nearshore
patch reefs in the shortest distance to near-island habitats
also explains the significantly greater number of differ-
ent habitats found within 1,000 m of nearshore patch

reefs. Large differences between nearshore and bank
patch reefs were also found for the shortest distance to
deep seagrass and lagoon gorgonian habitats. While
these habitats are not necessarily limited to near-island
areas, on the OP/SC platform they occur only in the
southern portion and are hence closer to the island sites.
No differences were observed for shoals (= broad extent
of shallow bedrock), but this habitat occurs in only a few
locations on the platform.

The above differences in the habitat landscape
around nearshore and bank patch reefs did not lead to
significant differences in fish community structure and
function except for number of individuals. This result
contrasts with those of Friedlander et al. (in press) who
found significantly greater biomass over all nearshore
sites on the OP/SC platform compared to all bank sites.
However, with the low number of replicates in the present
study the power of these tests were all quite low, so we
may not have detected any differences between the two
sets of patch reefs, if they in fact existed. Additionally,
there are other factors that may mask the effect of habitat
variability at landscape scales. For example, rugosity
was significantly greater at bank sites, and rugosity has
been correlated to species abundance and diversity (e.g.,
Luckhurst and Luckhurst 1978, Roberts and Ormond
1987, McCormick 1994, Friedlander and Parrish 1998),
yet mean biomass, species richness and diversity tended
to be higher at nearshore sites. Despite the lack of obvi-
ous differences in overall fish community structure,
differences were observed at the family level, with
neashore patch reefs having a much greater biomass of
both snappers and groupers than bank sites. Given that
these are two of the most abundant families (20% by
biomass at the bank sites and 40% at the nearshore sites),

TABLE 11

Settlement and/or nursery habitats for snappers and grunts as summarized from the literature.  Sources: Rooker
1995, Lindeman 1997, Lindeman and Snyder 1999, Lindeman et al. 1998, 2000, Nagelkerken et al. 2000a,c, Hill
2001.

Species Settlement/Nursery Habitat

Lutjanus griseus Obligate to seagrass (preferred) and mangroves
Lutjanus anilis Estuarine dependent, shallow seagrass and mangrove
Lutjanus mahogoni Seagrass or shallow reef
Lutjanus apodus Shallow seagrass, then mangrove, uses shallow reef opportunistically
Lutjanus jocu Estuarine dependent, shallow seagrass
Ocyurus chrysurus Seagrass and mangrove preferred
Haemulon flavolineatum Seagrass and hardbottom, very opportunistic settler
Haemulon plumieri Seagrass, some mangrove and hardbottom
Haemulon sciurus Seagrass, then mangrove, some hardbottom
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these differences do indeed constitute an important dif-
ference between nearshore and bank patch reef commu-
nities.

The species-specific examinations of spatial varia-
tions in length-frequency distributions support the idea
that some near-island habitats act as nursery areas. Gen-
erally, the observed patterns of abundance of small juve-
niles followed known patterns of habitat use for these
species (Table 11). In this study, shallow seagrass beds
were not surveyed. However, the prop root habitat (and
associated shallow seagrass bed) at McBean Lagoon
(3WM) appeared to serve as a nursery area for several
species. The only additional extent of this type of habitat
was located in the waters between the two islands, not far
from Morgan’s Head (4LP)(Figure 1). For some species
(e.g., gray and dog snappers) our results indicated little
to no dispersal away from these habitats, while for others
(e.g., mutton and mahogany snappers) the data suggested
there was moderate dispersal (although the wider distri-
bution of mahogany snapper may be due to opportunistic
settlement (Table 11) in shallow reef environments. Lack
of dispersal among these species would be an obvious
contributing factor to the differences in the biomass of
snappers among nearshore and bank patch reefs. Gener-
ally, the grunts as a whole showed wide distributions. In
particular, the French grunt had by far the widest distri-
bution on the platform, and it is reported to be the most
opportunistic species with respect to settlement and
nursery habitats (Table 11). Nevertheless, higher abun-
dances of juvenile grunts for all species were still found
at nearshore sites, indicating either preferential settle-
ment or greater juvenile survival in these areas, which
would contribute to the biomass differences of grunts
between nearshore and bank reefs. The tendency for
nursery areas to be preferentially located at nearshore sites
was strongest for bluestriped grunts, with large abun-
dances of juveniles in the mangrove lagoon and at
Morgan’s Head (4LP) and moderate dispersal to other
nearshore patch reefs and the leeward slope. For all species
for which the data suggested a large or moderate degree of
dispersal from nearshore habitats, the apparent dispersal
was always greater toward the lee side. This was particu-
larly apparent in species such as bluestriped grunt and
schoolmaster snapper, for which dominant abundance was
observed for juveniles in McBean Lagoon on the wind-
ward side of the island, yet leeside patch reefs and slope
environments showed greater abundances of adults.

The relationship of grunt and snapper biomass to the
extent of surrounding seagrass and sand/rubble habitats
suggests that the distribution of these species is limited
by available habitat associated with feeding. Grunts are

primarily soft-bottom feeders although large individuals
are capable of feeding in hard bottom areas (Dennis
1992a), while many snappers, although piscivorous when
large, feed on benthic invertebrates as juveniles and
young adults (Randall 1967, Rooker 1995, Nagelkerken
et al. 2000b). Studies of movement in the white grunt
(Tulevich and Recksiek 1994) and on the distribution of
French grunts relative to seagrass habitats (Kendall et al.
in press) indicate that the range of foraging in these
species is limited to about 300 m, which is consistent
with the spatial scale for the observed correlations.

The differences in biomass of grunts and snappers
between nearshore and bank patch reefs can be explained
within the context of habitat connectivity, and this can
be done at the scales of both feeding and ontogenetic
migrations. On the smaller scale, bank patch reefs appear
to lack sufficient nearby soft-bottom feeding habitats to
support an abundance of grunts and snappers. This alone
may explain their lower abundances at bank sites. On the
other hand, substantial differences in species diversity,
richness and biomass were found at sites other than patch
reefs (Friedlander et al. in press), and examination of the
length-frequency distributions suggests that dispersal to
all bank habitats may be limited to some extent. For
example, significantly greater overall fish abundance
and biomass at nearshore deep leeward slope habitats
(Friedlander et al. in press) would not be expected on the
basis of connectivity to soft-bottom habitats, as these are
quite limited at all leeward slope sites. Rather, the infer-
ence is that ontogenetic migration does have limits of its
own, i.e., distance alone may be important in limiting the
extent of dispersal. However, it is likely that the effect of
distance is modulated by the distribution and abundance
of available habitat and by factors affecting the choice of
migration direction. This is also indicated by the fact that
the distribution patterns vary markedly among species,
suggesting they are responding to differential habitat
preferences.

We hypothesize three mechanisms by which habitat
distribution could limit the extent of ontogenetic migra-
tion. If adult habitat is not limiting, nearshore areas may
merely fill up first, leaving little incentive to seek habi-
tats further away. This is certainly conceivable within the
OP/SC platform, where shallow, island-associated settle-
ment/nursery areas are located only within the southern
portion. The distribution of desired habitat may also
affect the direction of migration. That abundances of
those species suggested to undertake significant ontoge-
netic migration tend to be greater on the leeward side of
the platform may indicate that these migrations are not
simply movement directly offshore at the nearest point.
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The orientation of the OP/SC platform perpendicular to
the prevailing east-west current may also play a signifi-
cant role as a habitat variable. The apparent limitation of
feeding areas at bank patch reefs (Figures 2,3, Table 2)
points to a third mechanism. Lack of local connectivity
between reef and feeding habitats may result in a bottle-
neck in the distribution of essential habitat that results
in a reduction in subsequent dispersal, i.e., the limited
feeding areas at bank patch reefs may restrict the number
of mid-sized individuals to the extent that there are too
few to subsequently migrate out to other habitats further
out on the bank.

The Corporation for the Sustainable Development of
the Archipelago of San Andres, Old Providence and
Santa Catalina (CORALINA), Colombia, is currently
developing a regional system of multiple-use marine
reserves to improve the conservation and sustainable use
of the marine resources of the archipelago. In an initial
phase of this project, a group of scientists focused on the
islands of Old Providence and Santa Catalina and incor-
porated biological and sociological information on the
marine resources of the islands to help develop prelimi-
nary marine reserve zoning options (Friedlander et al. in
press). Based on apparent differences between bank and
nearhsore sites overall, this group recommended that
separate marine reserve sites be designated at both near
island and outer bank locations. The present study sup-
ports this recommendation and provides a mechanistic
justification. Two of the most basic tenets of marine
reserve network design are that all habitats be repre-
sented and that the resulting network be self-sustaining
(Ballantine 1997a,b). Here, habitat serves as a proxy
measure for community composition and structure, with
the real goal being to preserve all distinct biological
assemblages. In the case of OP/SC, the differences among
island and bank sites are subtle but significant enough to
consider them as being distinct, especially with respect
to species of limited dispersal from shallow water settle-
ment and nursery areas. Thus, both island and bank sites
are worthy of protection. The requirement of self-
sustainability addresses squarely the issue of habitat
connectivity. Biological communities can only be self-
sustaining if the habitats supporting them are also intact
and protected. In this case, preservation of the OP/SC
patch reef communities requires that reserves be large
enough to include surrounding soft-bottom habitats, at
least out to 500 m in the case of grunts and snappers. The
potential for ontogenetic connectivity among habitats
puts further constraints on reserve design. The important
role that the mangrove, shallow seagrass and shallow

rocky shoreline habitats play as settlement and nursery
areas mandates that the critical areas for these habitats
(McBean Lagoon (4LP), Morgan’s Head (3WM), and the
area between Old Providence and Santa Catalina) be
designated as marine reserves. These sites serve not only
the near island communities, but also those out on the
bank. Lastly, the length-frequency distributions suggest
that, for some species, patch reefs are serving as links to
other habitats, such as the leeward deep slope. Thus, it is
imperative that complete linkages be protected. The
most obvious such corridor in OP/SC is the westward
connection from the islands, through such highly diverse
sites as Morgan’s Head and San Felipe Shoal (5LP), to the
slope environments such as Felipe’s Place. Similar argu-
ments can be made for preserving corridors on the wind-
ward side, noting in particular the aggregations of adult
grunts observed at several forereef sites (Tables 6,8, and
Friedlander et al. in press). Because of their high fecun-
dity, large adults are particularly important contributors
to the spawning stock.
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